

TRANSMISSOR TXMINI-M12-485 / TXMINI-485 MANUAL DE OPERAÇÃO – V1.0x D

INTRODUÇÃO

O **TxMini-M12-485** é um transmissor de temperatura compacto para montagem interna na saída de sensores de temperatura do tipo termorresistência Pt100. Composto por um circuito eletrônico encapsulado e conexão M12 para alimentação e comunicação RS485 que já realiza o fechamento por rosca na saída do sensor.

Sua configuração pode ser realizada através de uma interface RS485 através de comandos *Modbus RTU*. O software *Windows*® *DigiConfig* permite ao usuário a configuração de todos os recursos do transmissor bem como seu diagnóstico, tendo a possibilidade da utilização de outro software Supervisório para a configuração e leitura das informações fornecidas pelo dispositivo.

ESPECIFICAÇÕES

Entrada de sensor:

Pt100 RTD: Tipo 3 fios, excitação de 0,8 mA, α = 0,00385, conforme NBR 13773. IEC 60751 (ITS-90).

Exatidão típica: 0,1 % Exatidão mínima: 0,2 %

Faixa de medição: -200 a 600 °C Faixa mínima de medição: 40 °C

Ajustado e calibrado em fábrica por padrões rastreáveis. Efeito da resistência dos cabos do sensor: $0,005~^{\circ}\text{C}$ / Ω Resistência máxima admissível do cabo sensor: $25~\Omega$ Tempo entre energizar e estabilizar a medida: < 2,5~s

Influência da temperatura: $< \pm 0.2 \% / 25 \degree C$

Tempo de resposta: típico 2 s

Tensão máxima admissível nos terminais de entrada no

sensor: 3 V

Alimentação: 7 a 40 Vcc, consumo < 10 mA Temperatura de Operação: -40 a 85 °C Umidade Ambiente: 0 a 90 % UR

Não apresenta isolamento elétrico entre entrada e saída.

Proteção interna contra inversão da polaridade da tensão de alimentação.

Secção do fio utilizado: 0,14 a 1,5 mm² Torque recomendado: 0,8 Nm

Alojamento: Poliamida Códigos de pedido:

- P/N: **8806060420**: Transmissor TxMini-M12-485;

- P/N: **8806060430**: Transmissor TxMini-M12-485-CN;

P/N: **8806060520**: Transmissor TxMini-485 (Equipamento só pode ser configurado durante a produção);

P/N: 8806060530: Transmissor TxMini-485-CN.

CONFIGURAÇÃO

Os parâmetros de fábrica do transmissor seguem na Tabela 1:

Parâmetros	Configuração
Indicador de erro	0
Correção de zero	0 ℃
Unidade	°C
Filtro digital	0
Timer configuração	60 s
Baud Rate	1200
Bits de Dados	8
Paridade	Par
Bits de parada	1
Endereço	247

Tabela 1 - Parâmetros de fábrica do TxMini-M12-485

Quando o transmissor for utilizado com esta configuração, não é necessária nenhuma intervenção e sua instalação pode ser executada imediatamente. Quando uma alteração na configuração for necessária, esta deverá ser realizada através do software *DigiConfig.* O software de configuração pode ser baixado gratuitamente no *website* do fabricante. Para a instalação execute o arquivo "*DigiConfigSetup.exe*" e siga as instruções do instalador. Na Fig. 1, *apresenta*-se a tela inicial do software *DigiConfig.*

Não apresenta isolamento elétrico entre a entrada e a saída.

SOFTWARE DE CONFIGURAÇÃO:

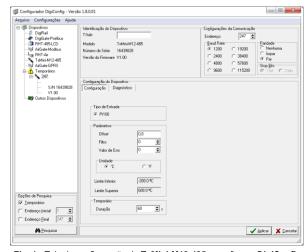


Fig. 1 - Tela de configuração do TxMini-M12-485 no software *DigiConfig*

Os menus de topo e os campos da tela acima apresentam as seguintes finalidades em uma visão geral, tendo uma maior complementação técnica no campo **Ajuda** → **Tópicos de ajuda**.

- 1. Arquivo: Para sair do software DigiConfig.
- 2. Configurações: Apresenta dois campos denominados de Comunicação e Idioma.
- <u>Comunicação</u>: Apresenta uma janela para a configuração dos parâmetros de comunicação do dispositivo.
- <u>Idioma</u>: Possibilita ao usuário escolher qual das opções de idioma será apresentado na tela do **DigiConfig**. Os idiomas disponíveis para escolha do usuário são as seguintes: Inglês, Espanhol e Português.
- 3. Ajuda: Apresenta dois campos denominados de Tópicos de ajuda e Sobre.
- <u>Tópicos de ajuda</u>: Auxilia através de uma janela descritiva com informações detalhadas sobre a utilização e parâmetros dos dispositivos compatíveis com o software *DigiConfig* tal como o transmissor **TxMini-M12-485**.
- <u>Sobre</u>: Apresenta uma janela descritiva com informações do site do fabricante e a versão de software do *DigiConfig*.
- **4. Dispositivos**: Este campo apresenta os equipamentos compatíveis com o software *DigiConfig*. Ao ser detectado um dispositivo na rede Modbus, apresentará um ícone de acesso correspondente sob a família de equipamentos a qual pertence e seu endereço Modbus para reconhecimento na rede.
- **5. Opções de Pesquisa**: Este campo dispõe dos recursos de Temporários, Endereço Inicial e Endereço Final.
- <u>Temporários</u>: Na pesquisa por Temporários, a busca por dispositivos é realizada com os parâmetros de comunicação de fábrica.
- <u>Endereço Inicial</u>: O Endereço Inicial selecionado busca por um dispositivo na rede, desde que o transmissor tenha os mesmos valores de *baud rate* e paridade configurados na janela de Comunicação do **DigiConfig**.
- <u>Endereço Inicial e Final</u>: O Endereço Inicial e final buscam por uma faixa de dispositivos na rede, através da escolha do endereço inicial e final a serem buscados na rede. Contudo, estes dispositivos pesquisados devem possuir os mesmos valores de *baud rate* e paridade configurados na janela de Comunicação do *DigiConfig*.

CONFIGURAÇÕES DO TXMINI-M12-485

Utilizando o software **DigiConfig** para realizar as configurações do dispositivo com as configurações de fábrica:

ETAPAS A SEGUIR:

- 1. Acesse o software **DigiConfig** (a partir da versão 1.8).
- 2. Clique na aba Configurações → Comunicação.
- 3. Selecionar a porta serial COM que o *DigiConfig* deverá utilizar.

Nota: A seleção da porta serial dependerá de qual COM a interface RS485 está relacionada.

- 4. Em Opções de Pesquisa, marque a condição Temporários.
- 5. Clique no botão Pesquisar:
- **6.** Aparecerá no campo Dispositivos (árvore de dispositivos) como Temporário.
- 7. Será apresentado o equipamento com o endereço 247, campo Título vazio, Número de Série e a Versão do *Firmware* do transmissor **TxMini-M12-485**.
- 8. Depois de visualizado o equipamento em Temporários, clique com o mouse, no endereço mostrado (247), e será apresentada uma janela indicativa de um novo dispositivo selecionado.
- **9.** Na parte superior, pode-se verificar a Identificação do Dispositivo com os seguintes itens:

- <u>Título</u>: Neste campo, o usuário poderá colocar um titulo com até dez caracteres que será visualizado na janela de dispositivos.
- Modelo: Apresenta o modelo do transmissor.
- <u>Número de Série</u>: Apresenta o número de série do transmissor em questão.
- <u>Versão de Firmware</u>: Apresenta a versão de firmware gravada no equipamento.
- 10. No setor de Configuração do Dispositivo, apresentam-se os seguintes itens:
- <u>Tipo de Entrada</u>: Indica o sensor Pt100 utilizado no transmissor **TxMini-M12-485**.
- Offset: O campo offset possibilita ao usuário alterar o valor lido de temperatura pelo sensor na faixa entre -10 a +10 graus.
- <u>Filtro</u>: O campo Filtro é utilizado para a estabilização da temperatura lida, no campo **Diagnóstico**, a fim de que o valor lido fique estabilizado e com a menor oscilação possível. Pode-se aplicar valores de Filtro digital de 0 a 20, tendo o valor de filtro **0** como uma condição de fábrica.
- <u>Valor de Erro</u>: O campo Valor de Erro sai de fábrica com a indicação de erro em **zero**, mas poderá assumir valores de -9999 a 9999 conforme o desejo do usuário. Esse valor de erro será assumido quando houver erro na leitura do sensor.
- <u>Unidade</u>: O campo Unidade sai de fábrica com a unidade de temperatura em graus *Celsius* (°C), porém há a possibilidade de selecionar o dispositivo para apresentar a temperatura em graus *Fahrenheit* (°F).
- <u>Limite Inferior e Limite Superior</u>: O campo Limite indica a faixa de medição permitida para leitura de temperatura do sensor Pt100.

Os campos Limite Inferior e Superior são apenas para visualização.

Nota: Para um melhor entendimento sobre a função Temporário → Duração, será relatada o seu funcionamento posteriormente as Configurações de Comunicação.

- 11. No setor de Configurações de Comunicação, apresentam-se os sequintes itens:
- <u>Endereço</u>: O campo Endereço possibilita ao usuário selecionar qual endereço *Modbus* o dispositivo irá ser configurado. O dispositivo pode ser configurado com valores de 1 a 247.

Nota: O dispositivo sai configurador de fábrica com o endereço em 247.

 <u>Baud Rate</u>: O campo <u>Baud Rate</u> possibilita ao usuário selecionar qual <u>Baud Rate</u> o dispositivo irá ser configurado. O dispositivo sai de fábrica com o valor de 1200 <u>Baud</u>, e pode ser configurado com os sequintes valores:

Baud Rate		
1200	19200	
2400	38400	
4800	57600	
9600	115200	

Tabela 2 - Opções de baud rates configuráveis

 <u>Paridade</u>: O campo Paridade possibilita ao usuário selecionar três valores para paridade, sendo que o dispositivo sai de fábrica com a configuração de paridade **Par**. As possibilidades para seleção são as seguintes:

Paridade	Stop bits
Nenhuma	2
Ímpar	1
Par	1

Tabela 3 - Opções de paridade configuráveis

Nota: A seleção da paridade define a quantidade de *bits* de parada de acordo com norma *Modbus*.

Aplicando uma configuração:

- 1. Edite os parâmetros de acordo com a necessidade.
- 2. Após, clique no botão Aplicar.
- Aparecerá uma janela indicando que a configuração está sendo enviada para o dispositivo (Enviando a configuração do dispositivo ...).
- Ao ser enviada as configurações, aparecerá uma janela indicativa de configurações realizadas com sucesso. Clique em OK

Configuração do Dispositivo - Temporário

O modo temporário foi criado para quando necessário alterar algumas configurações do dispositivo, mas não se souber ou lembrar algum dos parâmetros de comunicação como *Baud Rate*, Endereço ou Paridade previamente configurados.

Este modo tem o objetivo de manter os parâmetros de Comunicação iguais aos valores de fábrica, tendo como base a **Tabela 1**. O campo Duração sai de fábrica com o valor de sessenta segundos (60 s), e pode ser configurado na faixa de 10 a 60 s de acordo com as necessidades do usuário. Para um maior esclarecimento, será exemplificada a utilização do temporário e a função do campo Duração.

Ex.: O dispositivo foi configurado pelo usuário com os seguintes parâmetros:

Baud: 115200 Endereço: 121

Paridade: Nenhuma → Stop Bits: 2.

Procedimento para Temporário:

1º Desconectar o dispositivo do cabo fêmea (conector M12).

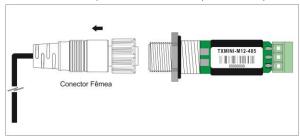


Fig. 2 - Desconexão do conector M12

2º Ao reconectar o cabo de alimentação e comunicação (M12), o equipamento retornará com as condições de fábrica de *Baud Rate* (1200), Paridade (Par) e Endereço (247). Neste momento, o campo **Duração** (60 s - fábrica) irá garantir que o dispositivo permaneça com os parâmetros citados durante esse período, ou seja, o usuário terá este tempo para realizar os procedimentos abaixo (3º ao 7º) antes que o dispositivo retorne para as configurações gravadas em sua memória. Lembrando que os parâmetros antigos dados como exemplo são:

Baud: 115200, Endereço: 121 e Paridade: Nenhuma.

Nota: Caso o usuário não realize as etapas (**3º ao 7º**) antes do valor configurado no campo Duração, o dispositivo retornará aos parâmetros configurados anteriormente.

- 3º Abrir o software Digiconfig.
- 4º Clique na aba Configurações → Comunicação.
- 5º Configurar o *DigiConfig* com os parâmetros de comunicação do dispositivo solicitados, segundo a **Tabela 1**
- 6º Em opções de Pesquisa, marque a condição Temporários.
- 7º Clique no Botão Pesquisar: Pesquisar
- 8º Aparecerá no campo Dispositivo (árvore de dispositivos) como Temporário.
- 9º Clique no dispositivo em temporário.
- 10º Será apresentado o equipamento com o endereço 247, campo título, número de série do transmissor (S/N) e a versão de firmware do TxMini-M12-485.

Agora, será possível verificar a configuração de *baud* (115200), paridade (nenhuma) e endereço (121) gravados no dispositivo através da tela de configuração do dispositivo.

DIAGNÓSTICO

<u>Temperatura:</u> No campo diagnóstico, apresenta-se o valor lido da temperatura e a sua unidade correspondente.

<u>Status</u>: Próximo do campo Temperatura tem-se os indicadores de status de erros. Os status são os seguintes:

- Sensor Aberto: Quando não temos nenhum sensor Pt100 ligado, o Status indicará Sensor Aberto.
- Overflow: Caso o sensor esteja lendo um valor de temperatura acima das medições permitidas para o sensor Pt100, o Status indicará overflow.
- *Underflow*: Caso o sensor esteja lendo um valor de temperatura abaixo das medições permitidas para o sensor Pt100, o Status indicará *underflow*.

COMANDOS MODBUS

Estão implementados os comandos (funções) *Modbus RTU* listados a seguir. Para maiores informações a respeito de cada um destes comandos e do protocolo *Modbus* em geral, acesse o site www.modbus.org.

READ HOLDING REGISTERS - 0 x 03

Este comando pode ser utilizado para ler o valor de um ou mais registradores retentivos, conforme "Tabela de Registradores Retentivos".

WRITE HOLDING REGISTERS - 0 x 06

Este comando pode ser utilizado para escrever em um registrador retentivo, conforme "Tabela de Registradores Retentivos".

TABELA DE REGISTRADORES RETENTIVOS

Os endereços especificados correspondem aos endereços físicos de baixo nível, onde zero (0) corresponde ao endereço de PLC 40001. As colunas *mínimo* e *máximo* possuem a faixa de valores válidos para cada parâmetro. A coluna *R/W* indica se o parâmetro é de leitura e escrita (R/W) ou se é somente leitura (R).

Endereço	Descrição	Mínimo	Máximo	R/W
0	Número de série (word high)	0	65535	R
1	Número de série (word low)	0	65535	R
2	Versão de firmware	100	199	R
3	Modelo	0	255	R
4	Leitura de Entrada - AD	-	-	R
5	Valor de temperatura (°C ou °F).*	-200	600	R
6	Status de erro, overflow underflow.	0	65535	R
7	Baud-Rate	0	7	R/W
8	Paridade	0	2	R/W
9	Endereço Modbus	1	247	R/W
10	Unidade de temperatura	0	1	R/W
11	Valor de erro	-9999	9999	R/W
12	Sensor	0	0	R
15	Offset de usuário para a temperatura.*	-100	100	R/W
16	Título	-	-	R/W
17	Título	-	-	R/W
18	Título	-	-	R/W
19	Título	-	-	R/W
20	Título	•	-	R/W
21	Timer - Temporário	10	90	R/W
22	Filtro Digital	0	20	R/W

Tabela 4 - Tabela de Registradores Retentivos

DESCRIÇÃO DE ALGUNS REGISTRADORES

REGISTRADOR 7 – BAUD RATE

Define a velocidade de comunicação Modbus. O transmissor sai de fábrica configurado com *Baud Rate 1200*.

Código	Baud Rate
0	1200
1	2400
2	4800
3	9600
4	19200
5	38400
6	57600
7	115200

Tabela 5 - Baud Rate

REGISTRADOR 8 - PARIDADE

Define o código de paridade utilizado na comunicação Modbus. O transmissor sai configurado com paridade par.

Código	Paridade
0	Sem Paridade (None)
1	Ímpar (<i>Odd</i>)
2	Par (Even)

Tabela 6 - Paridade

REGISTRADOR 9 - ENDEREÇO MODBUS

Define o endereço do transmissor na rede *Modbus*. Valores entre 1 e 247. O transmissor sai de fábrica configurado com endereço 247

REGISTRADOR 10 – UNIDADE DE TEMPERATURA

Define o código de unidade de temperatura utilizado na comunicação *Modbus*. O transmissor sai configurado com unidade em graus *Celsius* (°C).

Código	Unidade
0	°C
1	۴

Tabela 7 - Unidade de Temperatura

REGISTRADOR 11 – VALOR DE ERRO

Possui o valor de erro que é transmitido quando o sensor está com problema. O transmissor sai de fábrica com valor de 0.

REGISTRADOR 15 – OFFSET DE USUÁRIO TEMPERATURA

Define o valor de offset do usuário em unidades de engenharia para a temperatura. O transmissor sai de fábrica com o valor de offset igual a zero.

REGISTRADOR 16 a 20 – TÍTULO

Define um nome para identificar o transmissor **TxMini-M12-485** título do utilizado no software *DigiConfig*.

REGISTRADOR 21 – TIMER TEMPORÁRIO

Define o valor do tempo em que o dispositivo ficará em modo default de comunicação (*Baud*, Endereço e Paridade) para casos em que o usuário não lembre os parâmetros de gravação anteriores.

Nota: TEMPORÁRIO: 1200 baud, 247, Par.

Mais detalhes em "Procedimento para Temporário".

REGISTRADOR 22 - FILTRO DIGITAL

Define o código de Filtro Digital do usuário para uma estabilização, tratamento na leitura de temperatura. Sai de fábrica com filtro 0.

INSTALAÇÃO MECÂNICA

O **Transmissor TxMini-M12-485** é próprio para ser instalado em tubos e regiões com pouco espaço. Vibrações, umidade e temperatura excessivas, interferências eletro-magnéticas, alta tensão e outras interferências podem danificar o equipamento permanentemente, além de poder causar erro no valor medido.

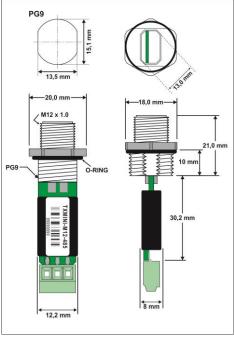


Fig. 3 - Dimensões do transmissor

^{*} Para as faixas da tabela sinalizados acima, considerar com uma casa decimal. Exemplo: -100 significa -10,0.

INSTALAÇÃO ELÉTRICA

RECOMENDAÇÕES PARA A INSTALAÇÃO

- Condutores de sinais de entrada devem percorrer a planta do sistema separados dos condutores de saída e de alimentação, se possível em eletrodutos aterrados.
- A alimentação dos instrumentos deve vir de uma rede própria para instrumentação.
- Em aplicações de controle e monitoração é essencial considerar o que pode acontecer quando qualquer parte do sistema falhar.

CONEXÃO DE ALIMENTAÇÃO E COMUNICAÇÃO

Os terminais 2 e 4 são para a comunicação serial e 1 e 3 para alimentação conforme tabela abaixo:

2 1	1	Vcc
	2	D+
3 4	3	GND
	4	D-

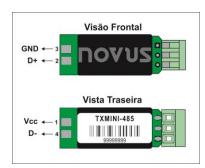


Fig. 4 – Conexão do modelo sem M12

NOTA: Modelo sem interface de configuração. Equipamento sai **somente** configurado em fábrica.

CONEXÃO DO SENSOR

Os terminais 1, 2, e 3 são dedicados à conexão do sensor, sendo que os terminais 1 e 2 devem ser interligados, conforme figura abaixo.

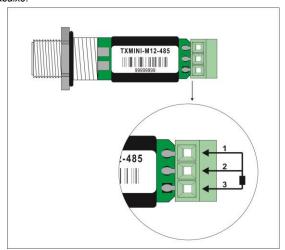


Fig. 5 - Conexão do sensor Pt100 no modelo com conector

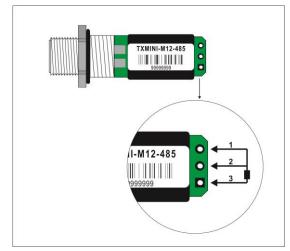


Fig. 6 - Conexão do sensor Pt100 no modelo sem conector

GARANTIA

As condições de garantia encontram-se em nosso website www.novus.com.br/garantia.